Coffee killer – Biodiversity on Mexico Coffee Farms

Tracking ‘la roya’ – the fungus threatening coffee’s future

Spreading across Mexico and Central America with alarming speed, the fungus has caused more than $1 billion in crop losses in recent years and has left hundreds of thousands of people jobless.

Two years ago, the coffee rust outbreak was so devastating that Mexico, Guatemala and Costa Rica declared a national crisis. Many coffee sellers just absorbed the costs of the damage, but they might not be able to do this much longer. Prices might rise for your favorite brew.

“If the epidemic this year is as bad as it was two years ago, you’ll come here in December and you’ll see this whole thing will look yellow,” Vandermeer says, sweeping his hand over a mountain slope covered in verdant coffee trees. “It reduces production by a tremendous amount. It’s a huge problem.”

Sri Lanka was once one of the world’s leading coffee producers until the fungus wiped out the crop in the 1800s, forcing the country—then known as Ceylon—to switch to tea. If Central America had to quit growing coffee, it would trigger an economic apocalypse for the region, which produces one-fifth of the world’s arabica—the smooth-flavored beans favored by the Starbucks sipping crowd.

Vandermeer and his research partner, Ivette Perfecto, both professors at the University of Michigan, are trying to better understand how the fungus spreads and what natural predators attack la roya. That’s why they are numbering the leaves on coffee trees. They’re creating a mathematical model—or network analysis—that will track how the fungus moves from leaf to leaf.

“Most experiment stations are focused on trying to find a fungicide to get rid of this disease,” says Vandermeer of the Department of Ecology and Evolutionary Biology. “That might not be the best thing to do, and it’s one of the things we are studying.”

After years of field research, Vandermeer and Perfecto have developed strong views about how coffee should be grown and why current methods that rely on chemicals are so harmful and unsustainable. They have also made fascinating discoveries about biodiversity—how complex relationships between plants, insects, reptiles, fungi and other organisms affect the coffee crop.

“Saving the world with pesticides, that story was told 50 years ago. And we all know it didn’t work,” says Perfecto, a professor in the School of Natural Resources and Environment. “Pesticides basically generate more problems than they solve.”

Vandermeer and Perfecto are among the founders of a field called agroecology. The big questions they’re trying to answer are: Does biodiversity matter and why? How does it affect agriculture? And what kind of impact does farming have on biodiversity? They recently published a book on the subject: “Coffee agroecology: A new approach to understanding agricultural biodiversity, ecosystem services and sustainable development.”

Growing coffee like corn

Anyone who watched any U.S. television in the 1980s might remember the commercials created by the coffee growers of Colombia. The ads featured the iconic Juan Valdez—the Marlboro man of caffeine. With a bushy mustache and straw hat, the fictional farmer would go into the fields with his faithful burro to pick coffee by hand.

When the camera panned across the sun-dappled valley, it showed neat rows of coffee trees on terraced plots climbing up the mountain slopes. For many, this is what comes to mind when they picture coffee fields.

Mexico - Feature - 2

The crop is also grown like this in places where Vandermeer and Perfecto work in Mexico. It’s an approach called “sun coffee,” with farmers growing the beans like corn in fields that only have coffee plants.

The upside is that the plants grow faster and produce more. The downside is that the approach makes the plants more vulnerable to weeds, insects and fungi. So chemicals are often used to control these threats.

The fields the U-M ecologists research would be terrible for a sweeping scenic shot for a TV commercial. That’s because from a distance, they don’t look like coffee fields at all. They resemble a forest or nature preserve. It’s hard to see the coffee because it grows under a canopy of other trees and vegetation. So it’s aptly called “shade coffee.”

Such an approach brings lower yields. But the benefits include fewer weeds because the taller trees block out some of the sun and minimize the undergrowth. There’s also greater biodiversity—a more robust mix of plants and creatures that often protect the coffee from pests. Many of the other trees are legumes, which enrich the soil with nitrogen.

Finding a finca

The shade coffee farm that Vandermeer and Perfecto have been studying for 17 years is called Finca Irlanda, a 300-hectare (740-acre) farm set in the mountains above the city of Tapachula in southern Chiapas state, near the border with Guatemala. It’s believed to be the first certified organic coffee farm in the world.

The Finca Irlanda shade coffee farm in Mexico's southern Chiapas state.